Skip to menu Skip to content Skip to footer

2022

Conference Publication

On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation

Xia, Xin, Yin, Hongzhi, Yu, Junliang, Wang, Qinyong, Xu, Guandong and Nguyen, Quoc Viet Hung (2022). On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation. SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11 - 15 July 2022. New York, NY United States: Association for Computing Machinery. doi: 10.1145/3477495.3531775

On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation

2022

Conference Publication

Accepted Tutorials at The Web Conference 2022

Tommasini, Riccardo, Roy, Senjuti Basu, Wang, Xuan, Wang, Hongwei, Ji, Heng, Han, Jiawei, Nakov, Preslav, Da San Martino, Giovanni, Alam, Firoj, Schedl, Markus, Lex, Elisabeth, Bharadwaj, Akash, Cormode, Graham, Dojchinovski, Milan, Forberg, Jan, Frey, Johannes, Bonte, Pieter, Balduini, Marco, Belcao, Matteo, Della Valle, Emanuele, Yu, Junliang, Yin, Hongzhi, Chen, Tong, Liu, Haochen, Wang, Yiqi, Fan, Wenqi, Liu, Xiaorui, Dacon, Jamell, Lye, Lingjuan ... He, Xiangnan (2022). Accepted Tutorials at The Web Conference 2022. The Web Conference 2022, Lyon, France, 25 – 29 April 2022. New York, NY United States: Association for Computing Machinery. doi: 10.1145/3487553.3547182

Accepted Tutorials at The Web Conference 2022

2021

Journal Article

Ready for emerging threats to recommender systems? A graph convolution-based generative shilling attack

Wu, Fan, Gao, Min, Yu, Junliang, Wang, Zongwei, Liu, Kecheng and Wang, Xu (2021). Ready for emerging threats to recommender systems? A graph convolution-based generative shilling attack. Information Sciences, 578, 683-701. doi: 10.1016/j.ins.2021.07.041

Ready for emerging threats to recommender systems? A graph convolution-based generative shilling attack

2021

Conference Publication

Double-scale self-supervised hypergraph learning for group recommendation

Zhang, Junwei, Gao, Min, Yu, Junliang, Guo, Lei, Li, Jundong and Yin, Hongzhi (2021). Double-scale self-supervised hypergraph learning for group recommendation. CIKM '21: The 30th ACM International Conference on Information and Knowledge Management, Virtual, 1-5 November 2021. New York, NY USA: Association for Computing Machinery. doi: 10.1145/3459637.3482426

Double-scale self-supervised hypergraph learning for group recommendation

2021

Conference Publication

Self-supervised graph co-training for session-based recommendation

Cui, Lizhen, Shao, Yingxia, Yu, Junliang, Yin, Hongzhi and Xia, Xin (2021). Self-supervised graph co-training for session-based recommendation. CIKM '21: The 30th ACM International Conference on Information and Knowledge Management, Virtual, 1-5 November 2021. New York, NY USA: Association for Computing Machinery. doi: 10.1145/3459637.3482388

Self-supervised graph co-training for session-based recommendation

2021

Journal Article

Path-based reasoning over heterogeneous networks for recommendation via bidirectional modeling

Zhang, Junwei, Gao, Min, Yu, Junliang, Yang, Linda, Wang, Zongwei and Xiong, Qingyu (2021). Path-based reasoning over heterogeneous networks for recommendation via bidirectional modeling. Neurocomputing, 461, 438-449. doi: 10.1016/j.neucom.2021.07.038

Path-based reasoning over heterogeneous networks for recommendation via bidirectional modeling

2021

Journal Article

Fast-adapting and privacy-preserving federated recommender system

Wang, Qinyong, Yin, Hongzhi, Chen, Tong, Yu, Junliang, Zhou, Alexander and Zhang, Xiangliang (2021). Fast-adapting and privacy-preserving federated recommender system. The VLDB Journal, 31 (5), 877-896. doi: 10.1007/s00778-021-00700-6

Fast-adapting and privacy-preserving federated recommender system

2021

Conference Publication

Socially-aware self-supervised tri-training for recommendation

Yu, Junliang, Yin, Hongzhi, Gao, Min, Xia, Xin, Zhang, Xiangliang and Viet Hung, Nguyen Quoc (2021). Socially-aware self-supervised tri-training for recommendation. 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual (Singapore), 14-18 August 2021. New York, NY, United States: ACM. doi: 10.1145/3447548.3467340

Socially-aware self-supervised tri-training for recommendation

2021

Conference Publication

Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation

Xia, Xin, Yin, Hongzhi, Yu, Junliang, Wang, Qinyong, Cui, Lizhen and Zhang, Xiangliang (2021). Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation. The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), Online, 2–9 February 2021. Washington, DC United States: Association for the Advancement of Artificial Intelligence. doi: 10.1609/aaai.v35i5.16578

Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation

2021

Conference Publication

Self-supervised hypergraph convolutional networks for session-based recommendation

Xia, Xin, Yin, Hongzhi, Yu, Junliang, Wang, Qinyong, Cui, Lizhen and Zhang, Xiangliang (2021). Self-supervised hypergraph convolutional networks for session-based recommendation. Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), Virtual, 2-9 February 2021. Palo Alto, CA, United States: Association for the Advancement of Artificial Intelligence.

Self-supervised hypergraph convolutional networks for session-based recommendation

2021

Journal Article

Recommender systems based on generative adversarial networks: A problem-driven perspective

Gao, Min, Zhang, Junwei, Yu, Junliang, Li, Jundong, Wen, Junhao and Xiong, Qingyu (2021). Recommender systems based on generative adversarial networks: A problem-driven perspective. Information Sciences, 546, 1166-1185. doi: 10.1016/j.ins.2020.09.013

Recommender systems based on generative adversarial networks: A problem-driven perspective

2021

Conference Publication

Self-supervised hypergraph convolutional networks for session-based recommendation

Xia, Xin, Yin, Hongzhi, Yu, Junliang, Wang, Qinyong, Cui, Lizhen and Zhang, Xiangliang (2021). Self-supervised hypergraph convolutional networks for session-based recommendation. 35th AAAI Conference on Artificial Intelligence / 33rd Conference on Innovative Applications of Artificial Intelligence / 11th Symposium on Educational Advances in Artificial Intelligence, Virtual, 2-9 February 2021. Palo Alto, CA, United States: Association for the Advancement of Artificial Intelligence Press.

Self-supervised hypergraph convolutional networks for session-based recommendation

2020

Journal Article

Enhance social recommendation with adversarial graph convolutional networks

Yu, Junliang, Yin, Hongzhi, Li, Jundong, Gao, Min, Huang, Zi and Cui, Lizhen (2020). Enhance social recommendation with adversarial graph convolutional networks. IEEE Transactions on Knowledge and Data Engineering, 34 (8), 1-1. doi: 10.1109/tkde.2020.3033673

Enhance social recommendation with adversarial graph convolutional networks

2019

Conference Publication

Nonlinear Transformation for Multiple Auxiliary Information in Music Recommendation

Zhang, Junwei, Gao, Min, Yu, Junliang, Wang, Xinyi, Song, Yuqi and Xiong, Qingyu (2019). Nonlinear Transformation for Multiple Auxiliary Information in Music Recommendation. 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14-19 July 2019. Piscataway, NJ United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/IJCNN.2019.8851992

Nonlinear Transformation for Multiple Auxiliary Information in Music Recommendation

2019

Conference Publication

Generating reliable friends via adversarial training to improve social recommendation

Yu, Junliang, Gao, Min, Yin, Hongzhi, Li, Jundong, Gao, Chongming and Wang, Qinyong (2019). Generating reliable friends via adversarial training to improve social recommendation. IEEE International Conference on Data Mining , Beijing, China, 8-11 November 2019. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/ICDM.2019.00087

Generating reliable friends via adversarial training to improve social recommendation

2019

Conference Publication

A minimax game for generative and discriminative sample models for recommendation

Wang, Zongwei, Gao, Min, Wang, Xinyi, Yu, Junliang, Wen, Junhao and Xiong, Qingyu (2019). A minimax game for generative and discriminative sample models for recommendation. 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Macau, China, 14-17 April 2019. Cham, Switzerland: Springer. doi: 10.1007/978-3-030-16145-3_33

A minimax game for generative and discriminative sample models for recommendation

2018

Conference Publication

PUED: A Social Spammer Detection Method Based on PU Learning and Ensemble Learning

Song, Yuqi, Gao, Min, Yu, Junliang, Li, Wentao, Yu, Lulan and Xiao, Xinyu (2018). PUED: A Social Spammer Detection Method Based on PU Learning and Ensemble Learning. Springer Verlag. doi: 10.1007/978-3-030-00916-8_14

PUED: A Social Spammer Detection Method Based on PU Learning and Ensemble Learning

2018

Conference Publication

Meta-path based heterogeneous graph embedding for music recommendation

Fang, Qianqi, Liu, Ling, Yu, Junliang and Wen, Junhao (2018). Meta-path based heterogeneous graph embedding for music recommendation. Springer Verlag. doi: 10.1007/978-3-030-04182-3_10

Meta-path based heterogeneous graph embedding for music recommendation

2018

Conference Publication

Detection of shilling attack based on bayesian model and user embedding

Yang, Fan, Gao, Min, Yu, Junliang, Song, Yuqi and Wang, Xinyi (2018). Detection of shilling attack based on bayesian model and user embedding. 30th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Volos, Greece, 5-7 November 2018. Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/ictai.2018.00102

Detection of shilling attack based on bayesian model and user embedding

2018

Conference Publication

Integrating User Embedding and Collaborative Filtering for Social Recommendations

Yu, Junliang, Gao, Min, Song, Yuqi, Fang, Qianqi, Rong, Wenge and Xiong, Qingyu (2018). Integrating User Embedding and Collaborative Filtering for Social Recommendations. Springer Verlag. doi: 10.1007/978-3-030-00916-8_44

Integrating User Embedding and Collaborative Filtering for Social Recommendations