Skip to menu Skip to content Skip to footer

2017

Journal Article

Cognitive implications of deep gray matter iron in multiple sclerosis

Fujiwara, E., Kmech, J. A., Cobzas, D., Sun, H., Seres, P., Blevins, G. and Wilman, A. H. (2017). Cognitive implications of deep gray matter iron in multiple sclerosis. American Journal of Neuroradiology, 38 (5), 942-948. doi: 10.3174/ajnr.A5109

Cognitive implications of deep gray matter iron in multiple sclerosis

2017

Journal Article

Deep grey matter iron accumulation in alcohol use disorder

Juhas, Michal, Sun, Hongfu, Brown, Matthew R. G., MacKay, Marnie B., Mann, Karl F., Sommer, Wolfgang H., Wilman, Alan H., Dursun, Serdar M. and Greenshaw, Andrew J. (2017). Deep grey matter iron accumulation in alcohol use disorder. NeuroImage, 148, 115-122. doi: 10.1016/j.neuroimage.2017.01.007

Deep grey matter iron accumulation in alcohol use disorder

2016

Journal Article

Importance of extended spatial coverage for quantitative susceptibility mapping of iron-rich deep gray matter

Elkady, Ahmed M., Sun, Hongfu and Wilman, Alan H. (2016). Importance of extended spatial coverage for quantitative susceptibility mapping of iron-rich deep gray matter. Magnetic Resonance Imaging, 34 (4), 574-578. doi: 10.1016/j.mri.2015.12.032

Importance of extended spatial coverage for quantitative susceptibility mapping of iron-rich deep gray matter

2015

Journal Article

Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis

Cobzas, Dana, Sun, Hongfu, Walsh, Andrew J., Lebel, R. Marc, Blevins, Gregg and Wilman, Alan H. (2015). Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis. Journal of Magnetic Resonance Imaging, 42 (6), 1601-1610. doi: 10.1002/jmri.24951

Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis