| 
 2026 Journal Article Acquisition-independent deep learning for quantitative MRI parameter estimation using neural controlled differential equationsKuppens, Daan, Barbieri, Sebastiano, van den Berg, Daisy, Schouten, Pepijn, Thoeny, Harriet C., van Laarhoven, Hanneke WM., Wennen, Myrte and Gurney-Champion, Oliver J. (2026). Acquisition-independent deep learning for quantitative MRI parameter estimation using neural controlled differential equations. Medical Image Analysis, 107 (Part A) 103768, 1-15. doi: 10.1016/j.media.2025.103768  | 
              
| 
 2025 Journal Article Aortic valve leaflet motion for diagnosis and classification of aortic stenosis using single view echocardiographyMeredith, Thomas, Mohammed, Farhan, Pomeroy, Amy, Barbieri, Sebastiano, Meijering, Erik, Jorm, Louisa, Roy, David, Hayward, Christopher, Kovacic, Jason C., Muller, David W. M., Feneley, Michael P. and Namasivayam, Mayooran (2025). Aortic valve leaflet motion for diagnosis and classification of aortic stenosis using single view echocardiography. Journal of Cardiovascular Imaging, 33 (1) 8, 1-10. doi: 10.1186/s44348-025-00051-8  | 
              
| 
 2025 Journal Article Predicting cardiovascular events from routine mammograms using machine learningBarraclough, Jennifer Yvonne, Gandomkar, Ziba, Fletcher, Robert A., Barbieri, Sebastiano, Kuo, Nicholas I-Hsien, Rodgers, Anthony, Douglas, Kirsty, Poppe, Katrina K., Woodward, Mark, Luxan, Blanca Gallego, Neal, Bruce, Jorm, Louisa, Brennan, Patrick and Arnott, Clare (2025). Predicting cardiovascular events from routine mammograms using machine learning. Heart, heartjnl-2025. doi: 10.1136/heartjnl-2025-325705  | 
              
| 
 2025 Journal Article A scoping review of the governance of federated learning in healthcareEden, Rebekah, Chukwudi, Ignatius, Bain, Chris, Barbieri, Sebastiano, Callaway, Leonie, de Jersey, Susan, George, Yasmeen, Gorse, Alain-Dominique, Lawley, Michael, Marendy, Peter, McPhail, Steven M., Nguyen, Anthony, Samadbeik, Mahnaz and Sullivan, Clair (2025). A scoping review of the governance of federated learning in healthcare. npj Digital Medicine, 8 (1) 427, 427-1. doi: 10.1038/s41746-025-01836-3  | 
              
| 
 2025 Journal Article Predictive factors of hypoglycemia in type 2 diabetes: a prospective study using machine learningShabestari, Motahare, Mehrabbeik, Akram, Barbieri, Sebastiano, Marques-Vidal, Pedro, Heshmati-nasab, Poria and Azizi, Reyhaneh (2025). Predictive factors of hypoglycemia in type 2 diabetes: a prospective study using machine learning. Scientific Reports, 15 (1) 18143, 1-13. doi: 10.1038/s41598-025-03030-7  | 
              
| 
 2025 Journal Article Generative AI mitigates representation bias and improves model fairness through synthetic health dataMarchesi, Raffaele, Micheletti, Nicolo, Kuo, Nicholas I-Hsien, Barbieri, Sebastiano, Jurman, Giuseppe and Osmani, Venet (2025). Generative AI mitigates representation bias and improves model fairness through synthetic health data. PLoS Computational Biology, 21 (5) e1013080, 1-23. doi: 10.1371/journal.pcbi.1013080  | 
              
| 
 2025 Journal Article Machine learning cluster analysis identifies increased 12-month mortality risk in transcatheter aortic valve replacement recipientsMeredith, Thomas, Mohammed, Farhan, Pomeroy, Amy, Barbieri, Sebastiano, Meijering, Erik, Jorm, Louisa, Roy, David, Kovacic, Jason, Feneley, Michael, Hayward, Christopher, Muller, David and Namasivayam, Mayooran (2025). Machine learning cluster analysis identifies increased 12-month mortality risk in transcatheter aortic valve replacement recipients. Frontiers in Cardiovascular Medicine, 12 1444658, 1444658. doi: 10.3389/fcvm.2025.1444658  | 
              
| 
 2024 Journal Article Enriching data science and health care education: application and impact of synthetic data sets through the health gym projectKuo, Nicholas I-Hsien, Perez-Concha, Oscar, Hanly, Mark, Mnatzaganian, Emmanuel, Hao, Brandon, Di Sipio, Marcus, Yu, Guolin, Vanjara, Jash, Valerie, Ivy Cerelia, de Oliveira Costa, Juliana, Churches, Timothy, Lujic, Sanja, Hegarty, Jo, Jorm, Louisa and Barbieri, Sebastiano (2024). Enriching data science and health care education: application and impact of synthetic data sets through the health gym project. JMIR Medical Education, 10 (1) e51388. doi: 10.2196/51388  | 
              
| 
 2023 Journal Article Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: example using antiretroviral therapy for HIVKuo, Nicholas I-Hsien, Garcia, Federico, Sönnerborg, Anders, Böhm, Michael, Kaiser, Rolf, Zazzi, Maurizio, Polizzotto, Mark, Jorm, Louisa and Barbieri, Sebastiano (2023). Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: example using antiretroviral therapy for HIV. Journal of Biomedical Informatics, 144 104436. doi: 10.1016/j.jbi.2023.104436  | 
              
| 
 2023 Journal Article Increasing national trend of direct-acting antiviral discontinuation among people treated for HCV 2016-2021Carson, Joanne, Barbieri, Sebastiano, Matthews, Gail V., Dore, Gregory J. and Hajarizadeh, Behzad (2023). Increasing national trend of direct-acting antiviral discontinuation among people treated for HCV 2016-2021. Hepatology Communications, 7 (4) e0125. doi: 10.1097/HC9.0000000000000125  | 
              
| 
 2022 Journal Article A machine learning approach to predict the added-sugar content of packaged foodsDavies, Tazman, Louie, Jimmy Chun Yu, Ndanuko, Rhoda, Barbieri, Sebastiano, Perez-Concha, Oscar and Wu, Jason H. Y (2022). A machine learning approach to predict the added-sugar content of packaged foods. Journal of Nutrition, 152 (1), 343-349. doi: 10.1093/jn/nxab341  | 
              
| 
 2021 Journal Article Using administrative data to predict cessation risk and identify novel predictors among new entrants to opioid agonist treatmentBharat, Chrianna, Degenhardt, Louisa, Dobbins, Timothy, Larney, Sarah, Farrell, Michael and Barbieri, Sebastiano (2021). Using administrative data to predict cessation risk and identify novel predictors among new entrants to opioid agonist treatment. Drug and Alcohol Dependence, 228 109091, 1-8. doi: 10.1016/j.drugalcdep.2021.109091  | 
              
| 
 2021 Journal Article Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patientsKaandorp, Misha P. T., Barbieri, Sebastiano, Klaassen, Remy, van Laarhoven, Hanneke W. M., Crezee, Hans, While, Peter T., Nederveen, Aart J. and Gurney-Champion, Oliver J. (2021). Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magnetic Resonance in Medicine, 86 (4), 2250-2265. doi: 10.1002/mrm.28852  | 
              
| 
 2020 Journal Article Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRIBarbieri, Sebastiano, Gurney-Champion, Oliver J., Klaassen, Remy and Thoeny, Harriet C. (2020). Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Magnetic Resonance in Medicine, 83 (1), 312-321. doi: 10.1002/mrm.27910  | 
              
| 
 2017 Journal Article Selection for biopsy of kidney transplant patients by diffusion-weighted MRISteiger, Philipp, Barbieri, Sebastiano, Kruse, Anja, Ith, Michael and Thoeny, Harriet C. (2017). Selection for biopsy of kidney transplant patients by diffusion-weighted MRI. European Radiology, 27 (10), 4336-4344. doi: 10.1007/s00330-017-4814-z  | 
              
| 
 2017 Journal Article Differentiation of prostate cancer lesions with high and with low Gleason score by diffusion-weighted MRIBarbieri, Sebastiano, Brönnimann, Michael, Boxler, Silvan, Vermathen, Peter and Thoeny, Harriet C. (2017). Differentiation of prostate cancer lesions with high and with low Gleason score by diffusion-weighted MRI. European Radiology, 27 (4), 1547-1555. doi: 10.1007/s00330-016-4449-5  |