Skip to menu Skip to content Skip to footer
Dr Mingyuan Lu
Dr

Mingyuan Lu

Email: 
Phone: 
+61 7 336 57033

Overview

Background

Dr. Mingyuan Lu was awarded her PhD from The University of Queensland in Febuary 2014. She has previously completed a Masters of Engineering (June 2009, Materials Science and Engineering, Central South University, China), and a Bachelor of Engineering (June 2007, Materials Science and Engineering, Central south University, China).

Mingyuan has more than 10 years’ experience in research, and during this period she has gained extensive experience with material synthesis, mechanical mechanics, and material characterization including nanoindentation, nanoscratching, atomic force microscopy, electron microscopy, and focused ion beam milling (FIB); additionally,she has experience with structural and compositional analysis techniques (Raman, XRD, EDS, DTA, DSC etc.).

Mingyuan's contributions to the field of mechanical and materials engineering are listed below:

Materials mechanics

  • (2015-2016) developed a new and successful FIB-machined micro-cantilever bending technique to study the fracture and interfacial properties of the protective intermetallic coatings on magnesium alloys: this technique can be applied to a wide range of materials, sub-surface structures and multilayered structures. Based on this methodology, they later developed a micro-bridge four-point bending technique. This approach can generate a “stable” interfacial delamination, and thus enables quantitative analysis of interfacial toughness.
  • (2011-2014) developed an indentation-based methodology for assessing the interfacial adhesion of bilayer structures, in a joint project that was funded by WIN Semiconductor Co., Taiwan: the methodology developed has been used to test the reliability of SiN-passivated GaAs semiconductor wafer products.

Materials synthesis and processing

  • (2015-current) developing a selective laser sintering process for the additive manufacturing of porous and biodegradable scaffolds, made from a biopolymer, for bone tissue engineering: this innovative process can produce scaffolds without the use of an artificial 3D model, and the scaffold has a unique interconnected pore architecture and large surface area making it suitable for bone tissue regeneration applications. The promising outcomes of the preliminary study have elicited strong support from UQ; it has received two generous internal grants (a philanthropic grant for an ECR in the field of engineering, and SEED funding) to enable further study in this field. The scaffolds will shortly be tested in a pre-clinical mouse model (funded by SEEM grant) to study biocompatibility and osteoconductivity.
  • (2007-2009) developed high-performance refractory metallic materials using powder metallurgy processes: in this project, they discovered the effect of trace TiC, ZrC Carbide nanoparticles on the mechanical properties, sintering behaviour and microstructure of molybdenum alloys.

Availability

Dr Mingyuan Lu is:
Available for supervision

Research interests

  • Laser deposition of titanium oxide on titanium alloy components for aerospace applications

    Surface modification is crucial for the design of high-value Ti parts with excellent tribological properties and will be developed into a major genre of technologies within the foreseeable future. This project aims to develop an innovative laser-based coating technology to deposit thick, dense and well adhered TiO2 protective coatings on a contoured surface of Ti alloy components. It addresses the issue of the current lack of surface modification techniques that are capable of depositing robust wear-resistant coatings on Ti alloys, which has limited the development of high-value Ti parts for aerospace applications. The outcome of the project will drive the design and production of durable Ti alloy aircraft components and will support the development of processes that will create high value manufacturing products.

  • Additive manufacturing of biodegradable porous polymer and bioceramic-polymer composite scaffolds for bone tissue engineering

    Additive manufacturing (AM) technologies has enabled the fabrication of scaffolds with a highly complex and completely interconnected pore network. This project aims to develop new AM processes for porous bio-polymer and bio-composite scaffolds for tissue engineering (TE) applications using novel powder formulations. Among various AM techniques, selective laser sintering (SLS) is used for producing TE scaffolds due to its ability to process a wide range of bio-engineering materials. In a SLS process, powder particles are selectively fused together with a focused laser beam in a layer-by-layer fashion based on the computer aided design (CAD) model of the part. The outcome of this project will lead to innovative SLS processes that would power new manufacturing industries for producing high value and innovative parts for bio-medical application.

  • Additive manufacturing (AM) of advanced ceramics

    Currently available additive manufacturing processes have not yet been able to successfully produce full density and defeat-free ceramic parts. This project aims to understand the fundamental mechanisms involved in the selective laser sintering and selective laser melting (SLM) of ceramic materials. In this project, systematic investigation is carried out to understand the interactions between materials, process parameters, properties and surface/structure integrity involved in the ceramic SLM process.

  • Characterising interfacial adhesion at nano and micro-scale using innovative testing methodologies

    Interfacial adhesion is a critical property that can influence the reliability of flexible microelectronic devices, such as roll-up displays, wearable smart devices, flexible sensors and solar cells. The current design of film stacking sequence in the microelectronics devices is determined by the electrical and optical functionality and not necessarily optimized for mechanical performance. Failure often occurs at the interfaces between dissimilar layers, when the device is subjected to external loading. To improve the device reliability, characterization of the interfacial property is imperative. The current lack of reliable methods available to assess the interfacial adhesion of a complex multilayered structure in a small-scale integrated system has limited the development of the next-generation flexible microelectronic devices. This research is to develop reliable quantitative methodologies for measuring interfacial adhesion under a simulated stress state that is pertinent to the actual service condition in order to develop predictive models for delamination and interface degradation. The methodologies developed in this project are intended for the typical multilayer structures found in the contemporary flexible and stretchable microelectronics. However, these techniques, once developed, can be readily applied to characterise the mechanical properties of diverse materials and structures at nano- and micro-scale, such as adhesion of the interfaces/interphases in protective coatings on metal substrates, composite materials, solder and weld joints, the stiffness and strength of structs and fibres in cellular materials and biomaterials, as well as the inter-layer adhesion of parts fabricated using additive manufacturing techniques.

Works

Search Professor Mingyuan Lu’s works on UQ eSpace

68 works between 2008 and 2024

61 - 68 of 68 works

2010

Journal Article

Influence of TiC Addition on Properties and Microstructure of Mo-Ti Alloy

Lu Mingyuan, , Fan Jinglian, , Cheng Huichao, , Liao Yuehui, and Tian Jiamin, (2010). Influence of TiC Addition on Properties and Microstructure of Mo-Ti Alloy. Rare Metal Materials and Engineering, 39 (6), 985-988.

Influence of TiC Addition on Properties and Microstructure of Mo-Ti Alloy

2010

Journal Article

Effect of Vacuum Treatment and Ti Content on the Properties and Microstructure of Mo-0.1Zr Alloy

Fan Jinglian, , Cheng Huichao, , Lu Mingyuan, and Tian Jiamin, (2010). Effect of Vacuum Treatment and Ti Content on the Properties and Microstructure of Mo-0.1Zr Alloy. Rare Metal Materials and Engineering, 39 (2), 338-342.

Effect of Vacuum Treatment and Ti Content on the Properties and Microstructure of Mo-0.1Zr Alloy

2010

Journal Article

Influence of rotary forging on mechanical properties and microstructure of Mo-Ti-Zr alloy

Luo, Ming, Fan, Jing-Lian, Cheng, Hui-Chao, Tian, Jia-Min and Lu, Ming-Yuan (2010). Influence of rotary forging on mechanical properties and microstructure of Mo-Ti-Zr alloy. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 41 (1), 97-102.

Influence of rotary forging on mechanical properties and microstructure of Mo-Ti-Zr alloy

2009

Journal Article

Effect of alloyed element Ti on property and microstructure of Mo alloy

Cheng, Hui-Chao, Fan, Jing-Lian, Lu, Ming-Yuan, Liu, Tao and Tian, Jia-Min (2009). Effect of alloyed element Ti on property and microstructure of Mo alloy. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 40 (2), 395-399.

Effect of alloyed element Ti on property and microstructure of Mo alloy

2009

Journal Article

Effect of microelement Zr on the property and microstructure of Mo alloy

Cheng, Huichao, Lu, Mingyuan, Fan, Jinglian, Tian, Jiamin, Huang, Boyun and Li, Yongming (2009). Effect of microelement Zr on the property and microstructure of Mo alloy. Fenmo Yejin Jishu/Powder Metallurgy Technology, 27 (1)

Effect of microelement Zr on the property and microstructure of Mo alloy

2009

Journal Article

Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum

Fan, Jinglian, Lu, Mingyuan, Cheng, Huichao, Tian, Jiamin and Huang, Boyun (2009). Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum. International Journal of Refractory Metals & Hard Materials, 27 (1), 78-82. doi: 10.1016/j.ijrmhm.2008.03.006

Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum

2008

Journal Article

Effect of alloyed elements Ti, Zr on the property and microstructure of Mo alloy

Fan Jinglian, , Cheng Huichao, , Lu Mingyuan, , Huang Boyun, and Tian Jiamin, (2008). Effect of alloyed elements Ti, Zr on the property and microstructure of Mo alloy. Rare Metal Materials and Engineering, 37 (8), 1471-1474.

Effect of alloyed elements Ti, Zr on the property and microstructure of Mo alloy

2008

Journal Article

Effects of Ti on tensile strength and microstructure of Mo-Ti alloy

Lu, Ming-Yuan, Fan, Jing-Lian, Cheng, Hui-Chao, Liu, Tao, Tian, Jia-Min and Huang, Bai-Yun (2008). Effects of Ti on tensile strength and microstructure of Mo-Ti alloy. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 18 (3), 409-413.

Effects of Ti on tensile strength and microstructure of Mo-Ti alloy

Funding

Current funding

  • 2024 - 2025
    Ultra-fast structure-property characterisation of materials (ARC LIEF grant administered by The University of New South Wales)
    University of New South Wales
    Open grant
  • 2023 - 2028
    ARC Training Centre for Innovative Composites for the Future of Sustainable Mining Equipment (ARC ITRP administered by the University of Wollongong)
    University of Wollongong
    Open grant
  • 2021 - 2024
    A new lapping process for difficult-to-machine brittle materials
    ARC Discovery Projects
    Open grant
  • 2021 - 2025
    Developing high performance nanocomposite coatings for domestic appliances
    ARC Linkage Projects
    Open grant

Past funding

  • 2023 - 2024
    Developing novel ceramic composite coatings on titanium/steel sandwich plates/sheets for wear, corrosion, and heat resistant
    Baosteel-Australia Joint Research and Development
    Open grant
  • 2020 - 2021
    Developing high performance nanocomposite coatings for manufacturing domestic appliances
    HBIS Group Co, Ltd
    Open grant
  • 2019 - 2024
    Micro/nano-mechanical testing methodologies for interfacial adhesion
    ARC Discovery Early Career Researcher Award
    Open grant
  • 2018
    Imaging in the nano-scale age: terahertz and millimetre wave microanalysis
    UQ Major Equipment and Infrastructure
    Open grant
  • 2017 - 2021
    Development of Offshore Structural Steels though Oxide Metallurgy and High Heat Input Welding Technology
    HBIS Group Co, Ltd
    Open grant

Supervision

Availability

Dr Mingyuan Lu is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Supervision history

Current supervision

  • Doctor Philosophy

    Evaluating the Interfacial Adhesion of multilayer systems using novel micro-mechanical testing protocols

    Principal Advisor

  • Doctor Philosophy

    Developing a new and efficient lapping process for brittle and hard materials

    Principal Advisor

    Other advisors: Professor Lisbeth Grondahl

  • Doctor Philosophy

    Tribological Behavior of Water Lubricant Using Nanocomposites as Additives

    Principal Advisor

  • Doctor Philosophy

    Ductile grinding mechanism and technology of brittle solids

    Principal Advisor

  • Doctor Philosophy

    Developing micromechanical testing protocols for bilayer and multilayer nanocomposite coatings

    Principal Advisor

    Other advisors: Professor Lisbeth Grondahl

  • Doctor Philosophy

    Surface modification of biodegradable scaffolds for bone tissue engineering application

    Principal Advisor

  • Doctor Philosophy

    Understanding Rock-Fluids Interaction in Shale Gas Reservoirs

    Associate Advisor

    Other advisors: Associate Professor Zhongwei Chen

Completed supervision

Media

Enquiries

For media enquiries about Dr Mingyuan Lu's areas of expertise, story ideas and help finding experts, contact our Media team:

communications@uq.edu.au