Skip to menu Skip to content Skip to footer
Dr Liza Raggatt
Dr

Liza Raggatt

Email: 

Overview

Background

Delineation of osteal macrophage function in the bone microenvironment: dual roles in bone dynamics and stem cell niches.

Bone and joint diseases are a national and international health and research priority costing the Australian health system over $10 billion annually. The bony skeleton is a dynamic metabolically active tissue that is continuously remodelled and repaired to maintain calcium homeostasis and structural integrity. The microenvironment at the inner surface of long bones (endosteum), including the bone matrix and associated bone lining cells, is crucial to the dynamic processes of bone modelling and remodelling. I have recently characterized 'osteomacs' as a resident tissue macrophage population within bone lining tissues and have shown that they promote bone mineralization in vitro and are necessary for the maintenance of bone forming osteoblasts in vivo. Thus osteomacs are cellular constituents of endosteal niches and play an osteoblast-support function in this microenvironment. We are investigating the unique phenotype and expression profile (mRNA and protein) of osteomacs in order to fully delineate their functional potential in bone dynamics.

Recently it has been shown that the endosteal environment is also essential for the maintenance of mesenchymal stem cell (MSC) and haematopoietic stem cell (HSC) niches. Osteoblasts need to be present on the bone surface to ensure HSC maintenance in the endosteal niche. Therefore we hypothesised that osteomacs, as a consequence of their presence in the niche and osteoblast support-function, contribute both indirectly and directly to the generation of this stem cell nursery. We have shown that loss of osteomacs and subsequently osteoblasts occurs during G-CSF induced HSC mobilization. Importantly, in vivo depletion of osteomacs (using transgenic Mafia mice) also causes marked egress of HSC from bone marrow into the blood and spleen. These data provide compelling support that osteomacs are required for maintenance of osteoblast bone forming surfaces and provide caretaker support for the endosteal stem cell niches.

My research team has a number of projects that aim to understand the cellular architecture of the endosteal stem cell niches and the role of osteomacs in this environment. This is an essential step toward enhancing clinical HSC mobilization options in order to improve bone marrow transplantation outcomes in multiple myeloma and lymphoma and also ensuring that the promise of MSC therapy is translated into a clinical reality.

Availability

Dr Liza Raggatt is:
Available for supervision

Qualifications

  • Doctor of Philosophy, University of Adelaide

Works

Search Professor Liza Raggatt’s works on UQ eSpace

82 works between 1998 and 2022

21 - 40 of 82 works

2013

Journal Article

Smg1 haploinsufficiency predisposes to tumor formation and inflammation

Roberts, Tara L., Ho, Uda, Luff, John, Lee, C. Soon, Apte, Simon H., MacDonald, Kelli P. A., Raggatt, Liza-Jane, Pettit, Allison R., Morrow, Carl A., Waters, Michael J., Chen, Phil, Woods, Rick G., Thomas, Gethin P., St. Pierre, Liam, Farah, Camile S., Clarke, Raymond A., Brown, James A. L. and Lavin, Martin F. (2013). Smg1 haploinsufficiency predisposes to tumor formation and inflammation. PNAS: Proceedings of the National Academy of Sciences of the United States of America, 110 (4), E285-E294. doi: 10.1073/pnas.1215696110

Smg1 haploinsufficiency predisposes to tumor formation and inflammation

2013

Conference Publication

Fracture Healing Via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Endochondral Ossification

Pettit, A., Raggatt, L., Wullschleger, M., Alexander, K., Steck, R., Kaur, S. and Wu, A. (2013). Fracture Healing Via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Endochondral Ossification. Annual Meeting of the American Society for Bone and Mineral Research, Baltimore MD United States, 4-7 October 2013. Hoboken, NJ United States: Wiley-Blackwell.

Fracture Healing Via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Endochondral Ossification

2013

Conference Publication

Mobilizing Doses Of G-CSF Stop Medullary Erythropoiesis By Depleting F4/8o+VCAM1+ER-HR3+CD169+Erythroid-Island Macrophages

Jacobsen, Rebecca, Pettit, Allison R., Raggatt, Liza J., Nowlan, Bianca, Barbier, Valerie, Forristal, Catherine E., Winkler, Ingrid G. and Levesque, Jean-Pierre (2013). Mobilizing Doses Of G-CSF Stop Medullary Erythropoiesis By Depleting F4/8o+VCAM1+ER-HR3+CD169+Erythroid-Island Macrophages. 55th Annual Meeting of the American-Society-of-Hematology, New Orleans, LA, United States, 7-10 December 2013. WASHINGTON: AMER SOC HEMATOLOGY.

Mobilizing Doses Of G-CSF Stop Medullary Erythropoiesis By Depleting F4/8o+VCAM1+ER-HR3+CD169+Erythroid-Island Macrophages

2013

Conference Publication

Mobilising Doses of G-Csf Stop Medullary Erythropoiesis by Depleting Cd169+Macrophages

Jacobsen, Rebecca, Pettit, Allison, Barbier, Valerie, Nowlan, Bianca, Raggatt, Liza, Winkler, Ingrid and Levesque, Jean-Pierre (2013). Mobilising Doses of G-Csf Stop Medullary Erythropoiesis by Depleting Cd169+Macrophages. 42nd Annual Scientific Meeting of ISEH - Society for Hematology and Stem Cells, Vienna, Austria, 22-25 August 2013. Philadelphia, PA United States: Elsevier Inc. doi: 10.1016/j.exphem.2013.05.230

Mobilising Doses of G-Csf Stop Medullary Erythropoiesis by Depleting Cd169+Macrophages

2012

Journal Article

Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation

Winkler, I. G., Pettit, A. R., Raggatt, L. J., Jacobsen, R. N., Forristal, C. E., Barbier, V., Nowlan, B., Cisterne, A., Bendall, L. J., Sims, N. A. and Levesque, J-P. (2012). Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia, 26 (7), 1594-1601. doi: 10.1038/leu.2012.17

Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation

2011

Journal Article

Osteal tissue macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model

Alexander, Kylie A., Chang, Ming K., Maylin, Erin R., Kohler, Thomas, Meuller, Ralph, Wu, Andy C., van Rooijen, Nico, Sweet, Matthew J ., Hume, David A., Raggatt, Liza J. and Pettit, Allison R. (2011). Osteal tissue macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. Journal of Bone And Mineral Research, 26 (7), 1517-1532. doi: 10.1002/jbmr.354

Osteal tissue macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model

2011

Conference Publication

B Cells Do Not Influence Intramembranous Bone Modelling in Vivo

Pettit, A. R., Kaur, S., Alexander, K. A., MacDonald, K. P. A. and Raggatt, L. J. (2011). B Cells Do Not Influence Intramembranous Bone Modelling in Vivo. IOF Regionals 2nd Asia-Pacific Osteoporosis and Bone Meeting / ANZBMS Annual Scientific Meeting held with the JSBMR, Gold Coast, QLD Australia, 4-8 September 2011. London, United Kingdom: Springer.

B Cells Do Not Influence Intramembranous Bone Modelling in Vivo

2011

Conference Publication

Mobilizing agents G-CSF, cyclophosphamide or AMD3100 (Plerixafor) Have distinct effects on osteoblasts, hematopoietic stem cell niches, and B-Lymphopoiesis

Levesque, Jean-Pierre, Bendall, Linda J., Pettit, Allison R., Raggatt, Liza, Jacobsen, Rebecca, Barbier, Valarie, Nowlan, Bianca, Shen, Yi Shen, Sims, Natalie A. and Winkler, Ingrid G. (2011). Mobilizing agents G-CSF, cyclophosphamide or AMD3100 (Plerixafor) Have distinct effects on osteoblasts, hematopoietic stem cell niches, and B-Lymphopoiesis. 53rd Annual Meeting and Exposition of the American Society of Hematology (ASH), San Diego CA, United States, 10-13 December 2011. Washington, DC, United States: American Society of Hematology.

Mobilizing agents G-CSF, cyclophosphamide or AMD3100 (Plerixafor) Have distinct effects on osteoblasts, hematopoietic stem cell niches, and B-Lymphopoiesis

2010

Journal Article

Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs

Winkler, Ingrid G., Sims, Natalie A., Pettit, Allison R., Barbier, Valérie, Nowlan, Bianca, Helwani, Falak, Poulton, Ingrid J., van Rooijen, Nico van, Alexander, Kylie A., Raggatt, Liza J. and Levesque, Jean-Pierre (2010). Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 116 (23), 4815-4828. doi: 10.1182/blood-2009-11-253534

Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs

2010

Journal Article

Cellular and molecular mechanisms of bone remodeling

Raggatt, Liza J. and Partridge, Nicola C. (2010). Cellular and molecular mechanisms of bone remodeling. Journal of Biological Chemistry, 285 (33), 25103-25108. doi: 10.1074/jbc.R109.041087

Cellular and molecular mechanisms of bone remodeling

2010

Conference Publication

DEPLETION OF BONE MARROW PHAGOCYTES CAUSES THE MOBILIZATION OF LONG-TERM RECONSTITUTING HEMATOPOIETIC STEM CELLS

Jacobsen, RN, Levesque, JP, Barbier, V, Raggatt, LJ and Pettit, AR (2010). DEPLETION OF BONE MARROW PHAGOCYTES CAUSES THE MOBILIZATION OF LONG-TERM RECONSTITUTING HEMATOPOIETIC STEM CELLS. 39th Annual Scientific Meeting of the ISEH - Society-for-Hematology-and-Stem-Cells, Melbourne AUSTRALIA, SEP 15-18, 2010. NEW YORK: ELSEVIER SCIENCE INC.

DEPLETION OF BONE MARROW PHAGOCYTES CAUSES THE MOBILIZATION OF LONG-TERM RECONSTITUTING HEMATOPOIETIC STEM CELLS

2009

Journal Article

Experimental and bioinformatic characterisation of the promoter region of the Marfan syndrome gene, FBN1

Summers, Kim M., Bokil, Nilesh J., Baisden, John M., West, Malcolm J., Sweet, Matthew J., Raggatt, Liza J. and Hume, David A. (2009). Experimental and bioinformatic characterisation of the promoter region of the Marfan syndrome gene, FBN1. Genomics, 94 (4), 233-240. doi: 10.1016/j.ygeno.2009.06.005

Experimental and bioinformatic characterisation of the promoter region of the Marfan syndrome gene, FBN1

2009

Journal Article

Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation

Markey, KA, Banovic, T, Kuns, RD, Olver, SD, Don, ALJ, Raffelt, NC, Wilson, YA, Raggatt, LJ, Pettit, AR, Bromberg, JS, Hill, GR and MacDonald, KPA (2009). Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation. BLOOD, 113 (22), 5644-5649. doi: 10.1182/blood-2008-12-191833

Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation

2009

Conference Publication

Osteomacs: osteoclast precursors during inflammatory bone disease but regulators of physiologic bone remodelling

Raggatt, L. J., Chang, M. K., Alexander, K. A., Maylin, E. R., Walsh, N. C., Gravallese, E. M., Hume, D. A. and Pettit, A. R. (2009). Osteomacs: osteoclast precursors during inflammatory bone disease but regulators of physiologic bone remodelling. 2nd Joint Meeting of the International Bone & Mineral Society and the Australian & New Zealand Bone & Mineral Society, Sydney, Australia, 21-25 March, 2009. New York: Elsevier Science. doi: 10.1016/j.bone.2009.01.300

Osteomacs: osteoclast precursors during inflammatory bone disease but regulators of physiologic bone remodelling

2009

Conference Publication

Endosteal Macrophages Maintain the Hematopoietic Stem Cell (Hsc) Niche and Participate in Hsc Mobilization Induced by G-Csf or Chemotherapy

Levesque, J. P., Raggatt, L. J., Pettit, A. R., Sims, N. A., Bendall, L. J. and Helwani, F. (2009). Endosteal Macrophages Maintain the Hematopoietic Stem Cell (Hsc) Niche and Participate in Hsc Mobilization Induced by G-Csf or Chemotherapy. 38th Annual Scientific Meeting of the ISEH Society for Hematology and Stem Cells, Athens, Greece, 9-12 September 2009. NEW YORK: ELSEVIER SCIENCE INC.

Endosteal Macrophages Maintain the Hematopoietic Stem Cell (Hsc) Niche and Participate in Hsc Mobilization Induced by G-Csf or Chemotherapy

2009

Conference Publication

Osteomacs: Osteoclast Precursors During Inflammatory Bone Disease but Regulators of Physiologic Bone Remodeling

Raggatt, L., Chang, M., Alexander, K., Maylin, E., Walsh, N., Gravallese, E., Hume, D. and Pettit, A. (2009). Osteomacs: Osteoclast Precursors During Inflammatory Bone Disease but Regulators of Physiologic Bone Remodeling. Australian Society of Bone and Mineral Research (ASBMR) 31st Annual Meeting, Denver, CO, United States, 11-15 September, 2009. United States: American Society for Bone and Mineral Research.

Osteomacs: Osteoclast Precursors During Inflammatory Bone Disease but Regulators of Physiologic Bone Remodeling

2009

Conference Publication

Osteomacs are critical for optimal intramembranous bone formation in a tibial defect model of bone healing

Alexander, K. A., Raggatt, L. J., Chang, M. K., Maylin, E. R., Muller, R., Kohler, T., Wu, A. C. K., Hume, D. A. and Pettit, A. R. (2009). Osteomacs are critical for optimal intramembranous bone formation in a tibial defect model of bone healing. 2nd Joint Meeting of the International Bone & Mineral Society and the Australian & New Zealand Bone & Mineral Society, Sydney, NSW, Australia, 21-25 March 2009. United States: Elsevier. doi: 10.1016/j.bone.2009.01.076

Osteomacs are critical for optimal intramembranous bone formation in a tibial defect model of bone healing

2009

Conference Publication

Osteomacs are Critical for Optimal Intramembranous Bone Formation in a Tibial Defect Model of Bone Healing

Alexander, K. A., Raggatt, L., Chang, M., Maylin, E., Muller, R., Kohler, T., Wu, A., Hume, D. and Pettit, A. (2009). Osteomacs are Critical for Optimal Intramembranous Bone Formation in a Tibial Defect Model of Bone Healing. Australian Society of Bone and Mineral Research (ASBMR) 31st Annual Meeting, Denver, Colorado, USA, 11-15 September, 2009. United States: American Society for Bone and Mineral Research.

Osteomacs are Critical for Optimal Intramembranous Bone Formation in a Tibial Defect Model of Bone Healing

2009

Conference Publication

Osteomacs maintain the endosteal hematopoietic stem cell niche and participate in mobilization

Pettit, A. R., Sims, N. A., Winkler, I. G., Alexander, K. A., Helwani, F., Raggatt, L. J. and Levesque, J. P. (2009). Osteomacs maintain the endosteal hematopoietic stem cell niche and participate in mobilization. 2nd Joint Meeting of the International Bone and Mineral Society/Australian New Zealand Bone and Mineral Society, Sydney, Australia, 21-25 March, 2009. United States: Elsevier Inc.. doi: 10.1016/j.bone.2009.01.082

Osteomacs maintain the endosteal hematopoietic stem cell niche and participate in mobilization

2008

Journal Article

Osteal macrophages: A new twist on coupling during bone dynamics

Pettit, A. R., Chang, M. K., Hume, D. A. and Raggatt, L. J. (2008). Osteal macrophages: A new twist on coupling during bone dynamics. Bone, 43 (6), 976-982. doi: 10.1016/j.bone.2008.08.128

Osteal macrophages: A new twist on coupling during bone dynamics

Funding

Past funding

  • 2018 - 2020
    Osteal macrophages as therapeutic targets for fracture repair
    NHMRC Project Grant
    Open grant
  • 2016 - 2019
    Recipient bone marrow macrophages contribute to haematopoietic stem cell transplantation success
    NHMRC Project Grant
    Open grant
  • 2014 - 2015
    The role of macrophages in facilitating hematopoietic stem cell engraftment and reconstitution
    Cancer Council Queensland
    Open grant
  • 2012
    Multi-user in vivo and ex vivo tissue-level mechanical testing instrument for bone and stem cell research
    NHMRC Equipment Grant
    Open grant
  • 2010
    Macroscopic fluorescence imaging system for identifying and isolating transgenically tagged cells
    NHMRC Equipment Grant
    Open grant
  • 2010
    Multi-user small animal digital x-ray imaging machine for bone, cancer, inflammation and stem cell research
    UQ Major Equipment and Infrastructure
    Open grant
  • 2010 - 2013
    Preclinical optimisation of intrauterine transplantation of fetal mesenchymal stem cells for osteogenesis imperfecta.
    NHMRC Project Grant
    Open grant
  • 2010 - 2013
    Regulation of Bone Dynamics by Osteal Tissue Macrophages (Osteomacs)
    NHMRC Project Grant
    Open grant
  • 2009 - 2011
    Primitive iPS-derived MSC for Bone Repair (ASCC Collaborative Stream 2 - Module 7)
    Australian Stem Cell Centre
    Open grant
  • 2007 - 2009
    Role of bone-associated macrophages in bone remodelling and bone disease
    NHMRC Project Grant
    Open grant
  • 2006
    The role of macrophages in regulating osteoblast differentiation and bone loss in osteoporosis
    Ramaciotti Foundation
    Open grant
  • 2005
    Role of Macrophages Residing on the Bone Surface in Bone Remodelling and Repair
    UQ Early Career Researcher
    Open grant
  • 2003 - 2007
    NHMRC PETER DOHERTY FELLOWSHIP: The involvement of syndecan 4 and fibroblast growth factor 2 in the anabolic actions of parathyroid hormone
    NHMRC Training (Postdoctoral) Fellowship
    Open grant

Supervision

Availability

Dr Liza Raggatt is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Available projects

  • ◾Macrophage regulation of the hematopoietic stem cell niche

  • ◾A novel osteoimmunological approach to identify anabolic bone therapies for osteoporosis & fracture repair

Media

Enquiries

For media enquiries about Dr Liza Raggatt's areas of expertise, story ideas and help finding experts, contact our Media team:

communications@uq.edu.au