Skip to menu Skip to content Skip to footer
Dr Peng Chen
Dr

Peng Chen

Email: 
Phone: 
+61 7 334 63815

Overview

Background

Dr. Peng Chen is an Australian Research Council (ARC) Discovery Early-Career Researcher Award (DECRA) Fellow in Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland. In 2020, he got his PhD degree from School of Chemical Engineering at UQ under the supervision of Prof. Lianzhou Wang. He then moved to AIBN and worked as an Australian Centre for Advanced Photovoltaics (ACAP) Research Fellow during 2020-2022, and started his ARC DECRA Fellowship in 2023.

Availability

Dr Peng Chen is:
Available for supervision

Qualifications

  • Masters (Research) of Engineering, Shanghai University (上海大学)
  • Doctor of Philosophy of Chemical Engineering, The University of Queensland

Research interests

  • Lead-free perovskites for low-cost and efficient solar cells

  • All-perovskite tandem solar cells for green hydrogen production

  • Stable perovskite optoelectronics for flow batteries

Research impacts

Dr. Peng Chen's research focuses on the development of low-cost and efficient thin-film photovoltaic technologies for renewable energy conversion and storage, including perovskite solar cells, quantum dot solar cells, and solar hydrogen production. In 2018, he pioneered the developement of bilayer 2D-3D perovskite heterostructured solar cells (Adv. Funct. Mater. 2018, 28, 1706923). In 2021, he participated in the conceptual design of ultrastable perovskite-MOF glassy composites for lighting applications (Science 2021, 374, 621). In the past 8 years, he has contributed to over 50 peer-reviewed research papers publishing in top journals including Science, Nature Energy, Nature Communications, Advanced Materials, Angewandte Chemie, Advanced Energy Materials, etc, attracting more than 5000 citations with a H-index of 30 (Google Scholar). He has also attracted several research funds from ARC and ARENA, such as ACAP Fellowship (2020-2022), ARC DECRA Fellowship (2023-2025), and ARC DP (2023-2025).

Works

Search Professor Peng Chen’s works on UQ eSpace

65 works between 2010 and 2025

1 - 20 of 65 works

2025

Journal Article

Stabilizing Tin–Lead Mixed Perovskite Solar Cells: A Spotlight on Antioxidation Strategies

Hang, Jiangyu, He, Dongxu, Chen, Peng, Luo, Bin and Wang, Lianzhou (2025). Stabilizing Tin–Lead Mixed Perovskite Solar Cells: A Spotlight on Antioxidation Strategies. ACS Applied Electronic Materials, 7 (3), 933-945. doi: 10.1021/acsaelm.4c01944

Stabilizing Tin–Lead Mixed Perovskite Solar Cells: A Spotlight on Antioxidation Strategies

2025

Journal Article

p-block metal based single-atom catalysts surpass transition-metal counterparts in photocatalytic H2O2 production

Lu, Haijiao, Yin, Hanqing, Harmer, Jeffrey, Xiao, Mu, You, Jiakang, Chen, Peng, Lin, Tongen, Du, Aijun, Wang, Zhiliang and Wang, Lianzhou (2025). p-block metal based single-atom catalysts surpass transition-metal counterparts in photocatalytic H2O2 production. Angewandte Chemie (International Edition), 64 (1) e202413769, e202413769. doi: 10.1002/anie.202413769

p-block metal based single-atom catalysts surpass transition-metal counterparts in photocatalytic H2O2 production

2024

Journal Article

Intermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis

Huang, Wengang, Chan, Bun, Yang, Yuwei, Chen, Peng, Wang, Jingjing, Casey, Lachlan, Atzori, Cesare, Schulli, Tobias, Mathon, Olivier, Hackbarth, Haira G., Bedford, Nicholas M., Appadoo, Dominique, Li, Xuemei, Lin, Tongen, Lin, Rijia, Lee, Jaeho, Wang, Zhiliang, Chen, Vicki, Cheetham, Anthony K., Wang, Lianzhou and Hou, Jingwei (2024). Intermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis. Journal of the American Chemical Society, 147 (4), 3195-3205. doi: 10.1021/jacs.4c12619

Intermarrying MOF Glass and Lead Halide Perovskites for Artificial Photosynthesis

2024

Journal Article

Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy

Han, EQ, Yun, Jung-Ho, Maeng, Inhee, Qiu, Tengfei, Zhang, Yurou, Choi, Eunyoung, Lee, Su-Min, Chen, Peng, Hao, Mengmeng, Yang, Yang, Wang, Hongxia, Zhang, Bo Wei, Yun, Jae Sung, Seidel, Jan, Lyu, Miaoqiang and Wang, Lianzhou (2024). Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy. Nano Energy, 131 (Part A) 110136, 110136. doi: 10.1016/j.nanoen.2024.110136

Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy

2024

Journal Article

Single‐atom catalysts with p‐block metals surpass transition‐metal counterparts in the photocatalytic H2O2 production

Lu, Haijiao, Yin, Hanqing, Harmer, Jeffrey, Xiao, Mu, You, Jiakang, Chen, Peng, Lin, Tongen, Du, Aijun, Wang, Zhiliang and Wang, Lianzhou (2024). Single‐atom catalysts with p‐block metals surpass transition‐metal counterparts in the photocatalytic H2O2 production. Angewandte Chemie, 137 (1). doi: 10.1002/ange.202413769

Single‐atom catalysts with p‐block metals surpass transition‐metal counterparts in the photocatalytic H2O2 production

2024

Journal Article

Organometallic compound stabilizes all‐inorganic tin‐based perovskite nanocrystals against antisolvent post‐treatment

Cheng, Huiyuan, Hao, Mengmeng, Ding, Shanshan, He, Dongxu, Zhang, Bowei, Wang, Kai, Yang, Qishuo, Chen, Peng, Wang, Zitong, Xu, Hongzhe, Zhang, Chengxi, Wang, Lianzhou and Steele, Julian A. (2024). Organometallic compound stabilizes all‐inorganic tin‐based perovskite nanocrystals against antisolvent post‐treatment. Small, 20 (52) 2405327, e2405327. doi: 10.1002/smll.202405327

Organometallic compound stabilizes all‐inorganic tin‐based perovskite nanocrystals against antisolvent post‐treatment

2024

Journal Article

Oxygen vacancy induced defect dipoles in BiVO4 for photoelectrocatalytic partial oxidation of methane

Li, Xianlong, Wang, Zhiliang, Sasani, Alireza, Baktash, Ardeshir, Wang, Kai, Lu, Haijiao, You, Jiakang, Chen, Peng, Chen, Ping, Bao, Yifan, Zhang, Shujun, Liu, Gang and Wang, Lianzhou (2024). Oxygen vacancy induced defect dipoles in BiVO4 for photoelectrocatalytic partial oxidation of methane. Nature Communications, 15 (1) 9127, 9127. doi: 10.1038/s41467-024-53426-8

Oxygen vacancy induced defect dipoles in BiVO4 for photoelectrocatalytic partial oxidation of methane

2024

Journal Article

Oxygen-mediated (0D) Cs4PbX6 formation during open-air thermal processing improves inorganic perovskite solar cell performance

Saha, Rafikul Ali, Chiu, Wei-Hsun, Degutis, Giedrius, Chen, Peng, Filez, Matthias, Solano, Eduardo, Orlov, Nikolai, De Angelis, Francesco, Ariza, Rocío, Meneghini, Carlo, Detavernier, Christophe, Mali, Sawanta S., Hoang, Minh Tam, Yang, Yang, Garnett, Erik C., Wang, Lianzhou, Wang, Hongxia, Roeffaers, Maarten B. J. and Steele, Julian A. (2024). Oxygen-mediated (0D) Cs4PbX6 formation during open-air thermal processing improves inorganic perovskite solar cell performance. ACS Nano, 18 (26), 16994-17006. doi: 10.1021/acsnano.4c03222

Oxygen-mediated (0D) Cs4PbX6 formation during open-air thermal processing improves inorganic perovskite solar cell performance

2024

Journal Article

Post-synthetic interstitial metal doping for efficient and stable 3D/2D heterostructured perovskite solar cells

Zhang, Chengxi, Baktash, Ardeshir, Steele, Julian A., He, Dongxu, Ding, Shanshan, Penukula, Saivineeth, Hao, Mengmeng, Lin, Rijia, Hou, Jingwei, Rolston, Nicholas, Lyu, Miaoqiang, Chen, Peng, Wu, Wu-Qiang and Wang, Lianzhou (2024). Post-synthetic interstitial metal doping for efficient and stable 3D/2D heterostructured perovskite solar cells. Advanced Functional Materials, 34 (24) 2315897, 1-11. doi: 10.1002/adfm.202315897

Post-synthetic interstitial metal doping for efficient and stable 3D/2D heterostructured perovskite solar cells

2024

Journal Article

Enhancing performance and longevity of solid-state zinc-iodine batteries with fluorine-rich solid electrolyte interphase

Huang, Yongxin, Wang, Yiqing, Peng, Xiyue, Lin, Tongen, Huang, Xia, Alghamdi, Norah S., Rana, Masud, Chen, Peng, Zhang, Cheng, Whittaker, Andrew K., Wang, Lianzhou and Luo, Bin (2024). Enhancing performance and longevity of solid-state zinc-iodine batteries with fluorine-rich solid electrolyte interphase. Materials Futures, 3 (3) 035102. doi: 10.1088/2752-5724/ad50f1

Enhancing performance and longevity of solid-state zinc-iodine batteries with fluorine-rich solid electrolyte interphase

2024

Journal Article

Accelerated redox reactions enable stable tin‐lead mixed perovskite solar cells

He, Dongxu, Chen, Peng, Hao, Mengmeng, Lyu, Miaoqiang, Wang, Zhiliang, Ding, Shanshan, Lin, Tongen, Zhang, Chengxi, Wu, Xin, Moore, Evan, Steele, Julian A., Namdas, Ebinazar, Bai, Yang and Wang, Lianzhou (2024). Accelerated redox reactions enable stable tin‐lead mixed perovskite solar cells. Angewandte Chemie International Edition, 63 (4) e202317446, 1-8. doi: 10.1002/anie.202317446

Accelerated redox reactions enable stable tin‐lead mixed perovskite solar cells

2024

Journal Article

Accelerated redox reactions enable stable tin‐lead mixed perovskite solar cells

He, Dongxu, Chen, Peng, Hao, Mengmeng, Lyu, Miaoqiang, Wang, Zhiliang, Ding, Shanshan, Lin, Tongen, Zhang, Chengxi, Wu, Xin, Moore, Evan, Steele, Julian A., Namdas, Ebinazar B., Bai, Yang and Wang, Lianzhou (2024). Accelerated redox reactions enable stable tin‐lead mixed perovskite solar cells. Angewandte Chemie, 136 (4) e202317446, 1-8. doi: 10.1002/ange.202317446

Accelerated redox reactions enable stable tin‐lead mixed perovskite solar cells

2024

Journal Article

Toward durable all-inorganic perovskite solar cells: from lead-based to lead-free

Xu, Hongzhe, Guo, Zhaochen, Chen, Peng and Wang, Songcan (2024). Toward durable all-inorganic perovskite solar cells: from lead-based to lead-free. Chemical Communications, 60 (85), 12287-12301. doi: 10.1039/d4cc04000g

Toward durable all-inorganic perovskite solar cells: from lead-based to lead-free

2023

Journal Article

Bilayer 2D-3D perovskite heterostructures for efficient and stable solar cells

Chen, Peng, He, Dongxu, Huang, Xia, Zhang, Chengxi and Wang, Lianzhou (2023). Bilayer 2D-3D perovskite heterostructures for efficient and stable solar cells. ACS Nano, 18 (1), 67-88. doi: 10.1021/acsnano.3c09176

Bilayer 2D-3D perovskite heterostructures for efficient and stable solar cells

2023

Journal Article

Ligand‐mediated homojunction structure for high‐efficiency FAPbI3 quantum dot solar cells

Ding, Shanshan, Steele, Julian A., Chen, Peng, Lin, Tongen, He, Dongxu, Zhang, Chengxi, Fan, Xiangqian, Solano, Eduardo, Whittaker, Andrew K., Hao, Mengmeng and Wang, Lianzhou (2023). Ligand‐mediated homojunction structure for high‐efficiency FAPbI3 quantum dot solar cells. Advanced Energy Materials, 13 (45) 2301817, 1-10. doi: 10.1002/aenm.202301817

Ligand‐mediated homojunction structure for high‐efficiency FAPbI3 quantum dot solar cells

2023

Journal Article

Interfacial alloying between lead halide perovskite crystals and hybrid glasses

Li, Xuemei, Huang, Wengang, Krajnc, Andraž, Yang, Yuwei, Shukla, Atul, Lee, Jaeho, Ghasemi, Mehri, Martens, Isaac, Chan, Bun, Appadoo, Dominique, Chen, Peng, Wen, Xiaoming, Steele, Julian A., Hackbarth, Haira G., Sun, Qiang, Mali, Gregor, Lin, Rijia, Bedford, Nicholas M., Chen, Vicki, Cheetham, Anthony K., Tizei, Luiz H. G., Collins, Sean M., Wang, Lianzhou and Hou, Jingwei (2023). Interfacial alloying between lead halide perovskite crystals and hybrid glasses. Nature Communications, 14 (1) 7612, 1-12. doi: 10.1038/s41467-023-43247-6

Interfacial alloying between lead halide perovskite crystals and hybrid glasses

2023

Journal Article

How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering applied to metal halide perovskite thin films

Steele, Julian A., Solano, Eduardo, Hardy, David, Dayton, Damara, Ladd, Dylan, White, Keith, Chen, Peng, Hou, Jingwei, Huang, Haowei, Saha, Rafikul Ali, Wang, Lianzhou, Gao, Feng, Hofkens, Johan, Roeffaers, Maarten B. J., Chernyshov, Dmitry and Toney, Michael F. (2023). How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering applied to metal halide perovskite thin films. Advanced Energy Materials, 13 (27) 2300760. doi: 10.1002/aenm.202300760

How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering applied to metal halide perovskite thin films

2023

Journal Article

How carbon contamination on the photocatalysts interferes with the performance analysis of CO<sub>2</sub> reduction

You, Jiakang, Xiao, Mu, Liu, Siqi, Lu, Haijiao, Chen, Peng, Jiang, Zhi, Shangguan, Wenfeng, Wang, Zhiliang and Wang, Lianzhou (2023). How carbon contamination on the photocatalysts interferes with the performance analysis of CO2 reduction. Journal of Materials Chemistry A, 11 (19), 10149-10154. doi: 10.1039/d3ta00834g

How carbon contamination on the photocatalysts interferes with the performance analysis of CO<sub>2</sub> reduction

2022

Journal Article

In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells

Ding, Shanshan, Hao, Mengmeng, Fu, Changkui, Lin, Tongen, Baktash, Ardeshir, Chen, Peng, He, Dongxu, Zhang, Chengxi, Chen, Weijian, Whittaker, Andrew K., Bai, Yang and Wang, Lianzhou (2022). In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells. Advanced Science, 9 (35) 2204476, 1-11. doi: 10.1002/advs.202204476

In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells

2022

Journal Article

Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells

Zhang, Chengxi, Baktash, Ardeshir, Zhong, Jun‐Xing, Chen, Weijian, Bai, Yang, Hao, Mengmeng, Chen, Peng, He, Dongxu, Ding, Shanshan, Steele, Julian A., Lin, Tongen, Lyu, Miaoqiang, Wen, Xiaoming, Wu, Wu‐Qiang and Wang, Lianzhou (2022). Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells. Advanced Functional Materials, 32 (52) 2208077, 1-11. doi: 10.1002/adfm.202208077

Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells

Funding

Current funding

  • 2025 - 2027
    Global Hub of Advanced Materials and Integrated Optoelectronics (GH-AMIO)
    Australian Academy of Technological Sciences and Engineering
    Open grant
  • 2025 - 2027
    Queensland Photon Detector Characterisation Facility
    Queensland Government Department of Environment, Science and Innovation
    Open grant
  • 2023 - 2026
    Solar rechargeable Zinc-Bromine Flow Batteries
    ARC Discovery Projects
    Open grant
  • 2023 - 2025
    All-perovskite tandem solar cells for efficient green hydrogen production
    ARC Discovery Early Career Researcher Award
    Open grant
  • 2022 - 2026
    Indoor Photovoltaics Enabled by Wide-Bandgap Perovskite Quantum Dots (ARC Linkage Project administered by Macquarie University)
    Macquarie University
    Open grant

Past funding

  • 2020 - 2022
    The development of high-efficiency quantum dot-organic tandem solar cells for new-generation wearable and lightweight photovoltaics
    Australian Centre for Advanced Photovoltaics
    Open grant

Supervision

Availability

Dr Peng Chen is:
Available for supervision

Before you email them, read our advice on how to contact a supervisor.

Available projects

  • All-perovskite tandem solar cells for efficient green hydrogen production

    This project aims to design functional materials for the development high-performance and durable solar energy conversion devices, which enable efficient green solar hydrogen production to reduce fossil fuel consumption and alleviate environmental burden. The expected outcomes include advanced semiconducting materials, proof-of-concept solar-driven water electrolytic system with a high solar-to-hydrogen conversion efficiency, and cutting-edge knowledge in material science, physical chemistry, and nanotechnology. The success of this project expects to facilitate pilot-scale green hydrogen industry and thus position Australia at the frontier of advanced materials, clean energy, and renewable hydrogen supply technologies.

  • Perovskite solar cells for Zn-Br flow batteries

    Australia is an energy-intensive country, in terms of both production and consumption per capita. Solar energy storage technology, which can reduce emissions of carbon dioxide and alleviate environmental and climate change, will directly benefit the Australian economy. This project aims to develop a new solar energy storage technology by integrating a solar charging process with the flow battery system for better utilization of the abundant yet intermittently available sunlight. Expected outcomes include a new solar driven rechargeable technology with high solar to electricity efficiency, which have strong commercial potential and will help to position Australia at the forefront of solar energy storage device development. The outcomes of this research will also significantly contribute new knowledge in materials science, electrochemistry, and nanotechnology, where Australia enjoys a competitive advantage.

  • Lead-free perovskites for non-toxic and low-cost photovoltaics

    A new family of optical materials – known as “metal halide perovskites” – have emerged within solar cell research, providing strong potential to revolutionize the photovoltaic market by satisfying several central criteria; namely, simple and scalable fabrication, low manufacturing costs and excellent power conversion efficiency. Recent progress has, however, been largely driven by the development of lead-based (Pb) perovskites solar cells as the field avoids dealing with the intractable issue of lead-toxicity, which imposes understandable adoption hesitancy and impedes commercialization. This project aims to resolve the toxicity issue by developing high-performance lead-free compounds, based on chemically similar tin (Sn), covering fundamental materials science and device development, to validating cost-effective and large-scale fabrication techniques through pilot studies informed by industry standards.

Media

Enquiries

For media enquiries about Dr Peng Chen's areas of expertise, story ideas and help finding experts, contact our Media team:

communications@uq.edu.au