
Overview
Background
1991-94 BSc Honours I (Chemistry) University of Queensland, University Medal
1995-99 PhD (Cancer Pathology) University of Queensland
1999-00 Post-Doctoral Fellow, Queensland University of Technology
2001-03 NHMRC CJ Martin/RG Menzies Fellow, Scripps Research Institute, San Diego, CA, USA
2003-05 NHMRC CJ Martin/RG Menzies Fellow, Queensland University of Technology
2005-09 NHMRC RD Wright Fellow, Queensland University of Technology
2010-15 Associate Professor, Mater Research Institute, The University of Queensland
2012-16 ARC Future Fellow, Mater Research Institute, The University of Queensland
2016- Professor of Cancer Biology, Mater Research Institute, The University of Queensland
Availability
- Honorary Professor John Hooper is:
- Available for supervision
Fields of research
Research interests
-
Cancers of the urological system, gynaecological system and gastrointestinal tract
Our focus is on the identification and evaluation of molecular targets and biomarkers of cancer. As much as possible our research employs disease relevant models that incorporate patient tumours. We have developed a successful R&D pipeline to identify cell surface receptors that are enriched in cancer for the purpose of targeting them for delivery of radiation and cytotoxins for cancer detection and treatment. This has culminated in a PET-CT imaging clinical trial evaluating a new radio-imaging agent to guide targeted therapy for ovarian and bladder cancer. My team is expert in generating and employing in vitro, ex vivo and mouse models of cancer, using patient specimens for much of this work. We have extensive experience in cell and molecular biology, protein analysis, including generation, purification and characterisation of recombinant proteins from insect and mammalian cells, enzymology, wide field fluorescent and confocal microscopy of live and fixed specimens, flow cytometry analysis and fluorescent activated cell sorting, bioluminescent and PET/CT imaging of mouse models of cancer, and histological and immunohistochemical analysis of mouse xenografts and patient tumours. We also have expertise in radio- and cytotoxin-labelling of biomolecules using these for detection and treatment of cancer in preclinical models. Our discovery and translational research activities are supported by close collaborations with medical specialists involved in treatment and diagnosis of cancer at Mater, Royal Brisbane and Women’s, Wesley, and Princess Alexandra Hospitals.
Research impacts
My major research contributions are in the identification and evaluation of molecular targets and biomarkers for cancers of the ovary, pancreas, prostate and bowel. At a molecular level my focus is on cell surface receptors, proteolytic enzymes, intracellular signal transducers, mediators of metabolism and protein post-translational modifications. Most recently we have developed a successful R&D pipeline to identify cell surface receptors that are enriched in cancer for the purpose of targeting them for delivery of radiation and cytotoxins for cancer detection and treatment. This has culminated in phase 1 PET-CT imaging clinical trials evaluating the safety and tumour/normal biodistribution of a new radio-imaging agent to guide targeted therapy for ovarian and bladder cancer. My team is expert in generating and employing in vitro, ex vivo and mouse models of cancer, using patient specimens for much of this work. We have extensive experience in cell and molecular biology, protein analysis, including generation, purification and characterisation of recombinant proteins from insect and mammalian cells, enzymology, wide field fluorescent and confocal microscopy of live and fixed specimens, flow cytometry analysis and fluorescent activated cell sorting, bioluminescent and PET/CT imaging of mouse models of cancer, and histological and immunohistochemical analysis of mouse xenografts and patient tumours. We also have expertise in radio- and cytotoxin-labelling of biomolecules using these for detection and treatment of cancer in preclinical models. Our discovery and translational research activities are supported by close collaborations with medical specialists involved in treatment and diagnosis of cancer at Mater, Royal Brisbane and Women’s, Wesley, and Princess Alexandra Hospitals. To date my research has attracted ~$17M in funding, producing 4 patents and 128 papers.
Works
Search Professor John Hooper’s works on UQ eSpace
2012
Journal Article
The cell surface glycoprotein CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor-mediated cell migration
Dong, Ying, He, Yaowu, de Boer, Leonore, Stack, M. Sharon, Lumley, John W., Clements, Judith A. and Hooper, John D. (2012). The cell surface glycoprotein CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor-mediated cell migration. Journal of Biological Chemistry, 287 (13), 9792-9803. doi: 10.1074/jbc.M111.335448
2012
Book Chapter
Kallikrein-related peptidases (KLKs), Proteinase-mediated signaling and proteinase-activated receptors (PARs)
Hollenberg, Morley D., Hooper, John D., Darmoul, Dalila and Oikonomopoulou, Katerina (2012). Kallikrein-related peptidases (KLKs), Proteinase-mediated signaling and proteinase-activated receptors (PARs). Characterization, regulation, and interactions within the protease web. (pp. 373-398) Berlin, Germany: De Gruyter Mouton.
2012
Book Chapter
Kallikrein-related peptidases (KLKs), Proteinase-mediated Signalling and Proteinase-activated receptors (PARs)
Hollenberg, M.D. and Hooper, John David (2012). Kallikrein-related peptidases (KLKs), Proteinase-mediated Signalling and Proteinase-activated receptors (PARs). Kallikrein-related peptidases Volume 1, Characterization, regulation, and interactions within the protease web. (pp. 373-398) edited by Viktor Magdolen, Christian Sommerhoff, Hans Fritz and Manfred Schmitt. Berlin Germany: DeGruyter.
2012
Book Chapter
Endogenous strategies for steroidogenesis and androgen signalling in prostate cancer cells
Bennett, Nigel C., Hooper, John and Gobe, Glenda C. (2012). Endogenous strategies for steroidogenesis and androgen signalling in prostate cancer cells. Androgens: production, functions and disorders. (pp. 99-114) edited by Berkley F. Thompson and Devon J. Robinson. New York, NY, United States: Nova Science Publishers.
2012
Journal Article
Evaluation of antibodies directed against human protease-activated receptor-2
Adams, Mark N., Pagel, Charles N., Mackie, Eleanor J. and Hooper, John D. (2012). Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn-Schmiedeberg's Archives of Pharmacology, 385 (9), 861-873. doi: 10.1007/s00210-012-0783-6
2011
Journal Article
Cellular settings mediating Src substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734
Wortmann, Andreas, He, Yaowu, Christensen, Melinda E., Linn, Mayla, Lumley, John W., Pollock, Pamela M., Waterhouse, Nigel J. and Hooper, John D. (2011). Cellular settings mediating Src substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734. Journal of Biological Chemistry, 206 (49), 42303-42315. doi: 10.1074/jbc.M111.227462
2011
Journal Article
The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2
Adams, Mark N., Christensen, Melinda E., He, Yaowu, Waterhouse, Nigel J. and Hooper, John D. (2011). The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2. PLoS One, 6 (11) e28018, 1-14. doi: 10.1371/journal.pone.0028018
2011
Journal Article
Structure, function and pathophysiology of protease activated receptors
Adams, Mark N., Ramachandran, Rithwik, Yau, Mei-Kwan, Suen, Jacky Y., Fairlie, David P., Hollenberg, Morley D. and Hooper, John D. (2011). Structure, function and pathophysiology of protease activated receptors. Pharmacology and Therapeutics, 120 (3), 248-282. doi: 10.1016/j.pharmthera.2011.01.003
2010
Journal Article
Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKC delta
He, Yaowu, Wortmann, Andreas, Burke, Les J., Reid, Janet C., Adams, Mark N., Abdul-Jabbar, Ibtissam, Quigley, James P., Leduc, Richard, Kirchhofer, Daniel and Hooper, John D. (2010). Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKC delta. Journal of Biological Chemistry, 285 (34), 26162-26173. doi: 10.1074/jbc.M109.096453
2010
Journal Article
The cutting edge: Membrane-anchored serine protease activities in the pericellular microenvironment
Antalis, Toni M., Buzza, Marguerite S., Hodge, Kathryn M., Hooper, John D. and Netzel-Arnett, Sarah (2010). The cutting edge: Membrane-anchored serine protease activities in the pericellular microenvironment. Biochemical Journal, 428 (3), 325-346. doi: 10.1042/BJ20100046
2010
Journal Article
Molecular cell biology of androgen receptor signalling
Bennett, Nigel C., Gardiner, Robert A., Hooper, John D., Johnson, David W. and Gobe, Glenda C. (2010). Molecular cell biology of androgen receptor signalling. International Journal of Biochemistry and Cell Biology, 42 (6), 813-827. doi: 10.1016/j.biocel.2009.11.013
2009
Journal Article
Androgen Receptor and Caveolin-1 in Prostate Cancer
Bennett, Nigel, Hooper, John D., Lee, C. Soon and Gobe, Glenda C. (2009). Androgen Receptor and Caveolin-1 in Prostate Cancer. IUBMB Life, 61 (10), 961-970. doi: 10.1002/IUB.244
2009
Journal Article
The Glycosylphosphatidylinositol-Anchored Serine Protease PRSS21 (Testisin) Imparts Murine Epididymal Sperm Cell Maturation and Fertilizing Ability
Sarah Netzel-Arnett, Thomas H. Bugge, Rex A. Hess, Kay Carnes, Brett W. Stringer, Anthony L. Scarman, John D. Hooper, Ian D. Tonks, Graham F. Kay and Toni M. Antalis (2009). The Glycosylphosphatidylinositol-Anchored Serine Protease PRSS21 (Testisin) Imparts Murine Epididymal Sperm Cell Maturation and Fertilizing Ability. Biology of Reproduction, 81 (5), 921-932. doi: 10.1095/biolreprod.109.076273
2009
Journal Article
Substrate-guided design of a potent and selective kallikrein-related peptidase inhibitor for kallikrein 4
Swedberg, Joakim E., Nigon, Laura V., Reid, Janet C., de Veer, Simon J., Walpole, Carina M., Stephens, Carson R., Walsh, Terry P., Takayama, Thomas K., Hooper, John D., Clements, Judith A., Buckle, Ashley M. and Harris, Jonathan M. (2009). Substrate-guided design of a potent and selective kallikrein-related peptidase inhibitor for kallikrein 4. Chemistry and Biology, 16 (6), 633-643. doi: 10.1016/j.chembiol.2009.05.008
2009
Journal Article
The cell surface glycoprotein CDCP1 in cancer - Insights, opportunities, and challenges
Wortmann, Andreas, He, Yaowu, Deryugina, Elena I., Quigley, James P. and Hooper, John D. (2009). The cell surface glycoprotein CDCP1 in cancer - Insights, opportunities, and challenges. IUBMB Life, 61 (7), 723-730. doi: 10.1002/iub.198
2009
Conference Publication
Kallikrein-related proteases as novel therapeutic targets in prostate and ovarian cancer
Clements, J. A., Dong, Y., Loessner, D., Tan, O., Sieh, S., Reichert, J., Burke, L., Stephens, C., Lawrence, M., Stansfield, S., Swedberg, J., Ramsay, A., Hooper, J., Harris, J. and Hutmacher, D. (2009). Kallikrein-related proteases as novel therapeutic targets in prostate and ovarian cancer. 40th Annual Conference of the Society for Reproductive Biology, Clayton, VIC, Australia: CSIRO Publishing. doi: 10.1071/srb09abs009
2009
Journal Article
Functional role of cell surface CUB domain-containing protein 1 in tumor cell dissemination
Deryugina, Elena I., Conn, Erin M., Wortmann, Andreas, Partridge, Juneth J., Kupriyanova, Tatyana A., Ardi, Veronica C., Hooper, John D. and Quigley, James P. (2009). Functional role of cell surface CUB domain-containing protein 1 in tumor cell dissemination. Molecular Cancer Research, 7 (8), 1197-1211. doi: 10.1158/1541-7786.MCR-09-0100
2009
Journal Article
Matriptase-2 (TMPRSS6): A proteolytic regulator of iron homeostasis
Ramsay, Andrew J., Hooper, John D., Folgueras, Alicia R., Velasco, Gloria and Lopez-Otin, Carlos (2009). Matriptase-2 (TMPRSS6): A proteolytic regulator of iron homeostasis. Haematologica, 94 (6), 840-849. doi: 10.3324/haematol.2008.001867
2008
Journal Article
The ubiquitin-protein ligase Nedd4-2 differentially interacts with and regulates members of the Tweety family of chloride ion channels
He, Yaowu, Hryciw, Deanne H., Carroll, Melanie L., Myers, Stephen A., Whitbread, Astrid K., Kumar, Sharad, Poronnik, Philip and Hooper, John D. (2008). The ubiquitin-protein ligase Nedd4-2 differentially interacts with and regulates members of the Tweety family of chloride ion channels. Journal of Biological Chemistry, 283 (35), 24000-24010. doi: 10.1074/jbc.M803361200
2008
Journal Article
N-glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement: impact of N-glycosylation on cellular processing of Tweety homologue 2 (TTYH2)
He, Yaowu, Ramsay, Andrew, Hunt, Melanie, Whitbread, Astrid, Myers, Stephen and Hooper, John (2008). N-glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement: impact of N-glycosylation on cellular processing of Tweety homologue 2 (TTYH2). Biochemical Journal, 412 (1), 45-55. doi: 10.1042/BJ20071722
Supervision
Availability
- Honorary Professor John Hooper is:
- Available for supervision
Before you email them, read our advice on how to contact a supervisor.
Available projects
-
Cellular targets for cancer detection and treatment
The project involves the use of state-of-the-art in silico and omics approaches to identify antigens that are suitable targets for delivery of radioactive and cytotoxic payloads to cancers. Candidates will be validated by analysis of patient tumours and normal organs.
-
Agents for targeted delivery of cytotoxins to cancer
A range of screening approaches will be employed to identify organic compounds, peptides and antibodies that bind with high affinity and specificity to antigens enriched on the surface of cancer cells. The efficacy of these agents for delivery of payloads to cancer will be evaluated using cellular and mouse models of cancer.
-
Disrupting metabolsim to improve cancer treatment efficacy
The project will employ disease-relevant in vitro mouse models to test metabolism modulating approaches to improve the efficacy of current anti-cancer treatments.
-
Targeting cell division to significatly improve the effectiveness of ovarian cancer treatments
The project will employ nanoparticle formulations of cell division disrupting drugs against patient-derived in vitro, ex vivo and in vivo models of high-grade serous ovarian cancer.
Supervision history
Current supervision
-
Doctor Philosophy
Cancer-associated post-translational modifications of the receptor CDCP1 Background:
Principal Advisor
-
Doctor Philosophy
Understanding the function of CDCP1 and its potential as a theranostic target for cholangiocarcinoma
Principal Advisor
Other advisors: Professor Kristofer Thurecht
-
Doctor Philosophy
Novel Theranostic Targets for Colorectal Cancer
Principal Advisor
Other advisors: Professor David Clark
-
Doctor Philosophy
Factors impacting receptor processing in response to peptide and antibody ligands
Principal Advisor
Other advisors: Dr Jodi Saunus
-
Doctor Philosophy
Molecular and cellular determinants of CDCP1 targeted, payload-delivery antibodies.
Principal Advisor
Other advisors: Associate Professor Michael Landsberg
-
Doctor Philosophy
Development of antibody-drug conjugates against hard-to-cure solid cancers
Associate Advisor
Other advisors: Dr Brett Paterson, Associate Professor Fernando Guimaraes
-
Doctor Philosophy
Developing new strategies to overcome immune suppression in cancer
Associate Advisor
Other advisors: Dr Sherry Wu
-
Doctor Philosophy
Developing novel strategies to overcome immune suppression in cancer
Associate Advisor
Other advisors: Dr Sherry Wu
-
Doctor Philosophy
Enhancing immune responses to cancer
Associate Advisor
Other advisors: Dr Jazmina Gonzalez Cruz, Professor Brian Gabrielli
-
Doctor Philosophy
Genomic and epigenomic correlates of prostate cancer therapy
Associate Advisor
Other advisors: Associate Professor Adam Ewing
-
Doctor Philosophy
Characterisation of EV-associated lipids in the progression of ovarian cancer
Associate Advisor
Other advisors: Dr Dominic Guanzon, Professor Carlos Salomon Gallo, Dr Andrew Lai
Completed supervision
-
2022
Doctor Philosophy
Profiling of Immunoglobulin (Ig) G, IgM and IgA Isotype Immune Responses and Development of Autoantibody Biomarkers for Early Detection of Colorectal Cancer
Principal Advisor
-
2022
Doctor Philosophy
Investigating New Therapeutic Targets for Clear Cell Cancers
Principal Advisor
-
2022
Doctor Philosophy
Theranostics: Molecular Imaging and Molecularly-Directed Radionuclide Therapy for Metastatic Colorectal Cancer
Principal Advisor
-
2016
Doctor Philosophy
Thesis Title: Investigation into the role of the cell surface glycoprotein CDCP1 in high-grade serous ovarian cancer progression
Principal Advisor
Other advisors: Professor Brian Gabrielli
-
2025
Doctor Philosophy
Biomarker driven diagnostic and therapeutic innovations in breast cancer
Associate Advisor
-
2020
Doctor Philosophy
Opportunities for epigenetic therapies in ovarian cancer
Associate Advisor
Other advisors: Associate Professor Jason Lee
-
2020
Doctor Philosophy
Regulation of Epithelial Ovarian Cancer Initiation and Progression by Exosomal Proteins and miRNAs
Associate Advisor
Other advisors: Professor Carlos Salomon Gallo
-
2020
Doctor Philosophy
New Strategies for Identification of Therapeutic Target of Ovarian Cancer
Associate Advisor
Other advisors: Professor Carlos Salomon Gallo
-
2018
Master Philosophy
The effects of Rab13 derived from lymph node stromal cell extracellular vesicles on the pathogenesis of colorectal cancer
Associate Advisor
-
2018
Doctor Philosophy
Dysregulation of EGF-trafficking in squamous cell carcinoma and cetuximab resistance
Associate Advisor
Other advisors: Professor Fiona Simpson
-
2018
Doctor Philosophy
Targeting Apoptosis as A Novel Therapy for Medulloblastoma
Associate Advisor
Other advisors: Dr Laura Genovesi, Professor Brandon Wainwright
-
-
2010
Doctor Philosophy
Androgen receptor, caveolin-1 and androgen self-sufficiency in prostate cancer
Associate Advisor
Other advisors: Professor David Johnson
Media
Enquiries
For media enquiries about Honorary Professor John Hooper's areas of expertise, story ideas and help finding experts, contact our Media team: